Folate-conjugated rapamycin slows progression of polycystic kidney disease.
نویسندگان
چکیده
Activation of the mammalian target of rapamycin (mTOR) signaling pathway is aberrant in autosomal-dominant polycystic kidney disease (ADPKD). The mTOR inhibitors, such as rapamycin, ameliorate PKD in rodent models, but clinical trials have not shown benefit, possibly as a result of low tissue concentrations of rapamycin at clinically tolerable doses. To overcome this limitation, we synthesized a folate-conjugated form of rapamycin (FC-rapa) that is taken up by folate receptor-mediated endocytosis and cleaved intracellularly to reconstitute the active drug. We found that renal cyst-lining cells highly express the folate receptor in ADPKD and mouse models. In vitro, FC-rapa inhibited mTOR activity in a dose- and folate receptor-dependent manner. Treatment of a PKD mouse model with FC-rapa inhibited mTOR in the target tissue, strongly attenuated proliferation and growth of renal cysts and preserved renal function. Furthermore, FC-rapa inhibited mTOR activity in the kidney but not in other organs. In summary, these results suggest that targeting the kidney using FC-rapa may overcome the significant side effects and lack of renal efficacy observed in clinical trials with mTOR inhibitors in ADPKD.
منابع مشابه
Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease.
Increased tubular epithelial cell proliferation is a prerequisite for cyst formation and expansion in polycystic kidney disease (PKD). Rapamycin is a potent antiproliferative agent. The aim of the present study was to determine the effect of rapamycin on tubular cell proliferation, cyst formation, and renal failure in the Han:SPRD rat model of PKD. Heterozygous (Cy/+) and littermate control (+/...
متن کاملClinical proof-of-concept trial to assess the therapeutic effect of sirolimus in patients with autosomal dominant polycystic kidney disease: SUISSE ADPKD study
BACKGROUND Currently there is no effective treatment available to retard cyst growth and to prevent the progression to end-stage renal failure in patients with autosomal dominant polycystic kidney disease (ADPKD). Evidence has recently been obtained from animal experiments that activation of the mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in cyst growth and renal...
متن کاملmTORC1/2 and rapamycin in female Han:SPRD rats with polycystic kidney disease.
Rapamycin slows disease progression in the male Han:SPRD (Cy/+) rat with polycystic kidney disease (PKD). The aim of this study was to determine the effect of rapamycin on PKD and the relative contributions of the proproliferative mammalian target of rapamycin complexes 1 and 2 (mTORC1 and mTORC2) in female Cy/+ rats. Female Cy/+ rats were treated with rapamycin from 4 to 12 wk of age. In vehic...
متن کاملA mild reduction of food intake slows disease progression in an orthologous mouse model of polycystic kidney disease.
Autosomal-dominant polycystic kidney disease (ADPKD) is a common cause of end-stage renal disease, and no approved treatment is available in the United States to slow disease progression. The mammalian target of rapamycin (mTOR) signaling pathway is aberrantly activated in renal cysts, and while mTOR inhibitors are highly effective in rodent models, clinical trials in ADPKD have been disappoint...
متن کاملMannose-binding lectin and the kidney.
et al. Caspase inhibition reduces tubular apoptosis and proliferation and slows disease progression in polycystic kidney disease. Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. Magenheimer BS et al. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 23 10 شماره
صفحات -
تاریخ انتشار 2012